Ela the Szegö Matrix Recurrence and Its Associated Linear Non-autonomous Area-preserving Map

نویسندگان

  • J. ABDERRAMÁN MARRERO
  • Oskar Maria Baksalary
چکیده

A change to the Szegö matrix recurrence relation, satisfied by orthonormal polynomials on the unit circle, gives rise to a linear map by the action of matrices belonging to the group SU(1; 1). The companion factorization of such matrices, via 2-order linear homogeneous difference equations, provides a compact representation of the orthogonal polynomial on the circle. Moreover, an isomorphism SU(1; 1) ≃ SL(2;R) enables the introduction of a linear non-autonomous area-preserving map. This dynamical system has counterparts in those from the complex Szegö recurrence relation, and some basic results are outlined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Szego matrix recurrence and its associated linear non-autonomous area-preserving map

A change to the Szegö matrix recurrence relation, satisfied by orthonormal polynomials on the unit circle, gives rise to a linear map by the action of matrices belonging to the group SU(1; 1). The companion factorization of such matrices, via 2-order linear homogeneous difference equations, provides a compact representation of the orthogonal polynomial on the circle. Moreover, an isomorphism SU...

متن کامل

Spectrum Preserving Linear Maps Between Banach Algebras

In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.

متن کامل

Linear maps preserving or strongly preserving majorization on matrices

For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...

متن کامل

Ela Linear Maps Preserving the Idempotency of Jordan Products of Operators

Let B(X ) be the algebra of all bounded linear operators on a complex Banach space X and let I(X ) be the set of non-zero idempotent operators in B(X ). A surjective map φ : B(X ) → B(X ) preserves nonzero idempotency of the Jordan products of two operators if for every pair A, B ∈ B(X ), the relation AB + BA ∈ I(X ) implies φ(A)φ(B) + φ(B)φ(A) ∈ I(X ). In this paper, the structures of linear s...

متن کامل

On strongly Jordan zero-product preserving maps

In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of  Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012